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Abstract 

Risk prediction tools are widely used in healthcare to identify individuals at high risk of adverse events who may 
benefit from proactive interventions. Traditionally, these tools are evaluated primarily on statistical performance 
measures—such as sensitivity, specificity, discrimination, and positive predictive value (PPV)—with minimal attention 
given to their cost-effectiveness. As a result, while many published tools report high performance statistics, evidence 
is limited on their real-world efficacy and potential for cost savings. To address this gap, we propose a straightforward 
framework for evaluating risk prediction tools during the design phase, which incorporates both PPV and interven-
tion effectiveness, measured by the number needed to treat (NNT). This framework shows that to be cost-effective, 
the per-unit cost of an intervention (I) must be less than the average cost of the adverse event (A) multiplied 
by the PPV-to-NNT ratio: I < A*PPV/NNT. This criterion enables decision-makers to assess the economic value of a risk 
prediction tool before implementation.
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Background
Healthcare systems face significant challenges in manag-
ing rising demand for services and the high costs of new 
technologies within limited budgets. These pressures are 
especially pronounced in unplanned care, where increas-
ing emergency department (ED) visits are often viewed 
as a consequence of unmet patient needs in primary 
care [1–3]. Unplanned admissions alone cost the English 

National Health Service (NHS) approximately £11 billion 
annually [4].

The prevailing belief is that timely and appropriate 
interventions could prevent many of these unplanned 
episodes and their associated costs. This raises a criti-
cal question: how can we identify patients at high risk of 
adverse events, such as unplanned admissions, to enable 
earlier interventions and mitigate both the event and its 
costs? This need underpins the development of numer-
ous population-based risk prediction tools [2, 5] that are 
widely used in primary care to guide proactive, preventa-
tive care.

Risk prediction tools
A recent systematic review [3] identified 28 prediction 
and stratification tools, such as the Patients At Risk of 
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Rehospitalisation algorithm [6], the Predictive RIsk Strat-
ification Model, the Nairn Case Finder and the QAd-
missions score [7]. The quality of risk prediction tools is 
usually assessed via a set of statistical performance met-
rics [8] such as sensitivity, specificity and discrimination 
described in Table 1.

For instance, the ability of a risk prediction tool to 
discriminate between patients who do and do not expe-
rience the outcome (eg unplanned admission) is a key 
indicator of performance and is denoted by the c-statistic 
which ranges from 0 to 1; where a value 0.5 is no better 
than tossing a coin, whilst perfect discrimination has a 
c-statistic of 1. Thus, the higher the c-statistic the better 
the risk prediction tool. In general, values less than 0.7 
are considered to show poor discrimination, values of 
0.7–0.8 can be described as reasonable, and values above 
0.8 suggest good discrimination. A recent review [3] of 
28 risk prediction tools reported c- statistics that ranged 
0.67 to 0.90, although only half of these were externally 
validated. (Internal validation is where the discrimination 
of the risk prediction tool is evaluated within the same 
population in which the model was derived, and external 
validation uses data from a separate population and is 
therefore a more stringent test).

The Positive Predictive Value (PPV) of a risk prediction 
tool is a metric that indicates how likely it is that a person 
with a positive test result actually has the condition being 
tested for. It’s a measure of the tools accuracy in correctly 
identifying true positive cases among all positive results. 
The PPV is crucial because it helps assess the reliability of 
a positive test result, which can impact clinical decision-
making and patient care. In general, a risk tool with a 
higher PPV is preferable. The more common the adverse 
event in the target population, the higher the PPV tends 

to be. If the adverse event is rare, the PPV will generally 
be lower.

Evaluation of risk prediction tools
Whilst the statistical performance of risk prediction 
tools is often well reported [3], the extent to which they 
impact on improving outcomes and reduce costs are 
reported infrequently [1, 3, 4]. One such exception is a 
well-designed and executed randomised stepped-wedge 
trial in primary care that measured the effects on ser-
vice usage, costs, mortality, quality of life and satisfaction 
of deploying a risk stratification tool, known as Prism, 
designed to reduce ED usage for use in primary care (32 
general practices, 230000 patients) [9]. The interven-
tion was the provision of the risk prediction tool along 
with training and support for staff in general practices. 
The primary results showed increases, not decreases, 
in unplanned admissions, ED attendances and overall 
healthcare costs.

Indeed, the recent systematic review [3] noted that 
“The results of real-world evaluation studies present 
equivocal evidence for the efficacy of these population 
level interventions. The majority of publications reported 
no change, or indeed significant increases, in health-
care utilisation within groups targeted by the interven-
tion, with only one-third of reports demonstrating some 
benefit.” [3]. The review concluded that “…there is little 
evidence to suggest that the identification of high-risk 
individuals can be translated to improvements in service 
delivery or morbidity. The available evidence does not 
support further integration of these types of risk predic-
tion into population healthcare pathways. There is an 
urgent need to independently appraise the safety, efficacy 

Table 1 Some of the metrics typically used to report the performance of a risk prediction tool applied to unplanned hospital 
admission

True outcome

Admitted to hospital Not admitted to hospital

Predicted outcome High-risk True positive (TP) False positive (FP)

Low-risk False negative (FN) True negative (TN)

Performance metric formula Description

Accuracy = (TP + TN)/(TP + FP + FN + TN) Accuracy measures how well the risk prediction tool identifies people who were and were not admitted 
to hospital

Sensitivity (aka recall) = TP/(TP + FN) The proportion of high-risk people who were admitted to hospital

Specificity = TN/(TN + FP) The proportion of low-risk people who were not admitted to hospital

Positive predictive value = TP/(TP + FP) The proportion of high-risk people who were admitted to hospital

Negative predictive value = TN/(TN + FN) The proportion of low-risk people who were not admitted to hospital

Concordance statistic (aka c-statistics or area 
under receiver operating characteristic):

The probability that a randomly selected person who was admitted to hospital will have a higher mod-
elled probability of admission than a randomly selected person who was not admitted to hospital
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and cost-effectiveness of risk prediction systems that are 
already widely deployed within primary care.” [3].

Whilst such empirical evidence is crucial to scientific 
progress, it is, ironically, relatively late in the day to dis-
cover such an antithetical result. It would be useful to 
find a way to fail faster and safely; by determining the 
extent to which a risk prediction tool is likely to succeed, 
at the design stage, before implementation. To address 
this gap, we propose a straightforward framework for 
evaluating risk prediction tools at the design stage before 
implementation.

Desing stage evaluation of risk prediction tools
We propose a straightforward framework for evaluating 
risk prediction tools during the design phase that inte-
grates both the positive predictive value (PPV) of the 
tool and the effectiveness of the subsequent intervention. 
Intervention effectiveness is summarised by the Number 
Needed to Treat (NNT), which represents the average 
number of patients who need to receive the intervention 
to prevent one additional adverse event. A lower NNT, 
closer to 1, indicates a highly effective intervention, as 
fewer people need to be treated to achieve a positive out-
come for one individual. Higher NNT values suggest less 
effective treatments, with typical reported ranges from 
10 to 100.

Our framework is grounded in the understanding that 
the real-world impact of risk prediction tools in a given 
population depends on both the statistical accuracy of 
the risk prediction tool and the cost-effectiveness of 
the interventions they guide. Therefore, a comprehen-
sive evaluation of a risk prediction tool’s utility requires 
consideration of its statistical performance—particu-
larly PPV—alongside the cost and effectiveness of the 
intervention and the cost of the adverse event. This 
framework, which aligns with approaches suggested by 
others [10], combines PPV and NNT to provide a prac-
tical assessment of whether a given risk prediction tool 
can deliver meaningful, cost-effective outcomes before it 
is implemented in a given population. We refer to this as 
a design-stage evaluation, summarized in Box 1.

Taking a population perspective, we focus on PPV 
because it indicates the proportion of high-risk indi-
viduals who are likely to experience the adverse event, 
fulfilling the primary purpose of risk models in prac-
tice. A higher PPV enhances the tool’s accuracy in iden-
tifying individuals at risk of the adverse event. However, 
prediction alone does not alter outcomes—an effective 
intervention is necessary to achieve this. Intervention 
effectiveness is captured by the NNT, while cost con-
siderations involve comparing the unit cost of the inter-
vention (I) against the average cost of the adverse event 
(A). For an intervention to be cost-saving, its unit cost (I) 

must be less than the average cost of the adverse event 
(A) multiplied by the PPV-to-NNT ratio, expressed 
I < A*PPV/NNT (see Box 1).

Box 1 Evaluation of risk prediction tools based 
on the PPV of the tool, the NNT and cost (I) 
of the intervention and the cost (A) of the adverse 
event. (IAPN)

• PPV is the positive predictive value of a risk prediction 
tool which aims to identify patients who will have an 
adverse event in a given period;

• NNT is the average number of people that need to 
receive the intervention in order to avoid one adverse 
event

• I is the unit cost of an intervention to prevent an 
adverse event which is delivered to those identified by 
the predictive risk tool then,

• A is the average cost of an adverse event, then
• I < A*PPV/NNT for the intervention to save money.

We use the acronym IAPN to refer this framework. 
We apply this approach to a hypothetical scenario 
below.

Hypothetical illustration
Consider a hypothetical general practice with 5000 
patients, where a risk prediction tool is to be used to 
identify the top 2% (n = 100) of patients at risk of an 
unplanned admission to hospital in the next 12 months. 
The scenario is not untypical of risk prediction tools to 
avoid unplanned hospital admissions [7, 11]. Figure  1 
shows this worked example.

The PPV of the risk prediction tool in this top 2% is 
reported as 36%, in other words 36 of the 100 identified 
patients would be expected to experience an unplanned 
admission (64 of the 100 would not). These indicative val-
ues (top 2%, PPV = 36%) for the risk prediction tool are 
not dissimilar to what is reported in practice [12]. Never-
theless, in this scenario, all 100 identified patients would 
be subject to an intervention designed to reduce the risk 
of an unplanned admissions. Let us imagine an interven-
tion with an NNT of 18 (ie for every 18 identified peo-
ple treated who would otherwise have been admitted, 1 
unplanned admission would be avoided). So, of the 36 
patients who go on to experience the event, our inter-
vention would avoid 2 such events. Let us assume that 
an unplanned admission costs on average £2000. To save 
money, our upstream intervention must cost less than 
£40 (= 2 × 2000/100) per patient.

Figure 2 illustrates how the cost per identified patient 
varies with PPV (10% to 100%) and NNT (1–200) values 
for our worked example. The general message is that the 
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lower the NNT (ie more effective interventions) the more 
we can afford to pay per identified patient for a given PPV 
and that impact of improvements in PPV become more 
pronounced with more effective interventions (lower 
NNTs).

Discussion
We, along with others [10], offer this simple IAPN 
framework as a practical approach that enables decision 
makers to assess the potential of risk prediction tools 
to succeed in practice. High quality decision making 
requires access to relevant and reliable information. Our 
proposed framework does this by combining the PPV 
with the NNT and shows that to save money, the unit 
cost of an intervention (I) must be less than the average 
cost of the adverse event (A) multiplied by the ratio of the 
PPV/NNT. (I < A*PPV/NNT).

There are a few caveats to our illustrative example. 
We have not included the preliminary costs of devel-
oping and deploying the risk prediction tool in IT sys-
tems because these are generally considered to be much 
lower than the cost of using them to intervene to reduce 
adverse healthcare outcomes [9]. Where these prelimi-
nary costs are available and deemed material, they may 
be incorporated into the calculus. We used a single PPV 

but changing the risk threshold for defining low and 
high-risk patients by focusing on say the top 5% (or 1%) 
instead of the top 2% of cases would induce a lower (or 
higher) PPV. Furthermore, the recognition that not all 
high-risk patients are amenable to avoiding the adverse 
outcome, has led to approaches to identify subsets of at-
risk patients for whom the intervention is expected to be 
more successful [13]. Such “impactibility” based models 
are also subject to the formula described in box 1.

The NNT was promoted in clinical decision making 
over 25  years ago [11, 14] and is now widely used but 
has attracted criticism [15–17]. For example, the NNT 
is heavily influenced by the baseline risk in the popula-
tion being studied (e.g., how likely the event is to occur 
without treatment). In high-risk populations, the NNT 
will generally be lower, whereas it may be much higher 
in low-risk populations. Many of the criticism relate to 
the use of the NNT for clinical decision making in indi-
vidual patients, whereas we use the NNT alongside the 
PPV for a given population (not individual clinical deci-
sion making).

Despite the above caveats, we strongly recommend that 
all risk prediction schemes, pending, current or future, 
should undergo evaluation using this IAPN framework. 
In our worked example the NNT is 18 with a cost of £40 

Fig. 1 Worked example demonstrating the evaluation of a hypothetical risk prediction tool, using the PPV of the risk prediction tool, the NNT 
of an upstream intervention and the costs associated with the intervention and the adverse event
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per patient. This is a critical issue to make transparent 
to decision makers (and other stakeholders) who then 
need to make explicit their degree of belief around such 
an intervention and its cost whilst noting the tendency 
for optimism bias. As shown in Fig.  1, we suggest that 
decision makers are supplied with NNTs, and associated 
costs for a range of comparable interventions, to help 
calibrate their judgements whilst recognising that further 
refinements could be made by incorporating statistical 
uncertainty around the terms in the IAPN equation.
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