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Abstract 

Background: For end-users of diabetes models that include UKPDS 82 risk equations, an important question is how 
well these new equations perform. Consequently, the principal objective of this study was to validate the UKPDS 82 
risk equations, embedded within an established type 2 diabetes mellitus (T2DM) model, the Cardiff Diabetes Model, 
to contemporary T2DM outcomes studies.

Methods: A total of 100 validation endpoints were simulated across treatment arms of twelve pivotal T2DM out-
comes studies, simulation cohorts representing each validation study’s cohort profile were generated and intensive 
and conventional treatment arms were defined in the Cardiff Diabetes Model.

Results: Overall the validation coefficient of determination was similar between both sets of risk equations: UKPDS 
68, R2 = 0.851; UKPDS 82, R2 = 0.870. Results stratified by internal and external validation studies produced MAPE 
of 43.77 and 37.82%, respectively, when using UKPDS 82, and MAPE of 40.49 and 53.92%, respectively when using 
UKPDS 68. Areas of lack of fit, as measured by MAPE were inconsistent between sets of equations with ACCORD 
demonstrating a noteworthy lack of fit with UKPPDS 68 (MAPE = 170.88%) and the ADDITION study for UKPDS 82 
(MAPE = 89.90%).

Conclusions: This study has demonstrated that the UKPDS 82 equations exhibit similar levels of external validity to 
the UKPDS 68 equations with the additional benefit of enabling more diabetes related endpoints to be modeled.
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Background
The global prevalence of diabetes is estimated at 382 
million and accounts for 11% ($548 billion) of the total 
global healthcare spend [1]. By 2035, diabetes preva-
lence is expected to rise by 55% to 592 million and cost 
the global economy $627 billion [1]. The majority of 
this cost is associated with the management of diabetes 
related macrovascular and microvascular complications: 
diabetes-specific therapies account for a relatively small 
proportion of the total cost burden, around 9–12% [2]. 
Nevertheless, healthcare decision makers require vali-
dated decision support tools to evaluate the expected 
long-term health economic benefit associated with 

managing diabetes. This is particularly relevant given the 
complexity of the diabetes specific therapeutic landscape.

Model validation in diabetes has a robust pedigree: 
the Mount Hood Challenge meetings are open forums 
for computer modelers of diabetes to discuss and com-
pare models [3–5]. These forums allow modelers to iden-
tify important differences observed between predicted 
model outputs when using standardized inputs; discuss 
methodological challenges and agree on approaches to 
improving diabetes models. Diabetes models are essen-
tially a framework designed to support a collection of risk 
equations and parameters; consequently, justifying the 
choice of equations and parameters utilised is important. 
A recent review identified twelve risk equations for the 
prediction of cardiovascular disease in subjects with type 
2 diabetes mellitus (T2DM) [6]. One such set of equations 
are derived from the United Kingdom Prospective Diabe-
tes Study (UKPDS), the UKPDS equations [7–9]. These 
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equations have been used by many modeling groups for 
the prediction of microvascular and macrovascular risk 
in subjects with T2DM [10]. The recent publication of an 
update to the UKPDS risk equations (UKPDS 82) [11], 
has generated considerable interest amongst both devel-
opers and users of diabetes models. Compared to previ-
ous versions of the UKPDS equations, including the most 
commonly used UKPDS 68, the UKPDS 82 risk equations 
allow for the modeling of an expanded set of cardiovas-
cular and microvascular endpoints; including secondary 
myocardial infarction and stroke events; the use of addi-
tional modifiable risk factors and mortality risk now cal-
culated with greater granularity.

For end-users of these diabetes models that now 
include the UKPDS 82 update an important question is 
how well new equations perform. Consequently, the prin-
cipal objective of this study was to validate the UKPDS 82 
risk equations, embedded within an established T2DM 
model, to contemporary T2DM outcomes studies. A sec-
ondary objective was to illustrate the influence that the 
expanded risk factor set has on predicted endpoints.

Methods
The Cardiff Diabetes Model
The Cardiff Diabetes Model [12] is designed to estimate 
the long-term economic and health impact of managing 
patients with T2DM. The model is a fixed time increment 
(six-monthly) stochastic simulation with a 40-year time 
horizon; the core model is coded in C++ and linked to 
a Microsoft Excel front end. Development of the Cardiff 
Model began in 2003 and was initially based on the non-
insulin dependent diabetes mellitus (NIDDM) model, 
published by Eastman [13, 14]. This model was updated 
to include UKPDS 56, 60 and 68 equations in 2004 and 
UKPDS 82 in 2014.

The model has been used to explore general health 
economic issues in diabetes modeling including the cost 
effectiveness of treatment strategies [15]; the inter-rela-
tionship haemoglobin A1c (HbA1c), hypoglycaemia and 
weight change on predicted quality adjusted life years 
[16]; the use of variance reduction techniques to improve 
model run-time [17]; and the influence of therapy esca-
lation thresholds on cost-effectiveness [18]. The Car-
diff model has participated in the last five Mount Hood 
Challenge meetings: Mount Hood 3 (2003, Oxford, UK); 
Mount Hood 4 (2004, Basel, Switzerland) [4]; Mount 
Hood 5 (2010, Malmo, Sweden) [5], Mount Hood 6 
(2012, Baltimore, USA), Mount Hood 7 (2014, Stanford, 
USA).

In general, the model utilizes the UKPDS Outcomes 
Model equations (UKPDS 68 and 82) to predict mac-
rovascular and microvascular complications in sub-
jects with T2DM. The model is designed to evaluate 

a treatment and control pathway, each of which are 
comprised of up to three lines of therapy. Therapy 
escalation is either time dependent or controlled via 
user-defined HbA1c thresholds. The model is capable 
of running with mean values, with probabilistic inputs 
or with user-supplied patient level data; standard 
health economic output includes cost per life years 
gained and cost per quality adjusted life years (QALYs) 
gained. Standard model output includes time-depend-
ent event rates, total cost and utility decrements asso-
ciated with all predicted events.

Validation studies
The validation studies included for this analysis are 
categorized into internal and external. Internal vali-
dation is designed to assess whether the output of the 
model is internally consistent with the studies and 
data sources used to construct the disease progression 
algorithm used by the model. The predominant source 
of data used by the Cardiff Model is the UKPDS and 
therefore validation to UKPDS 33 [19], 68 and 80 are 
considered internal validation studies. External vali-
dation compares output from the model with data not 
specifically used to construct the disease progression 
algorithms. The external validation studies selected 
represent a broad range including blood glucose lower-
ing, blood pressure lowering, lipid lowering and multi-
factorial risk factor management. The specific external 
validation studies included in this analysis were: the 
Atorvastatin Study for Prevention of Coronary Heart 
Disease Endpoints in non-insulin-dependent diabetes 
mellitus (ASPEN) [20]; the Veterans Affairs Diabetes 
Trial (VADT) [21]; the Action in Diabetes and Vascu-
lar Disease: Preterax and Diamicron Modified Release 
Controlled Evaluation (ADVANCE) [22]; the Action to 
Control Cardiovascular Risk in Diabetes (ACCORD) 
[23]; the Anglo–Danish–Dutch Study of Intensive 
Treatment In People with Screen Detected Diabetes in 
Primary Care (ADDITION-Europe) [24]; the Anglo–
Scandinavian Cardiac Outcomes Trial-Blood Pres-
sure Lowering Arm (ASCOT) [25]; the Collaborative 
Atorvastatin Diabetes Study (CARDS) [26]; the Saxa-
gliptin Assessment of Vascular Outcomes Recorded in 
patients with diabetes mellitus–Thrombolysis in Myo-
cardial Infarction (SAVOR-TIMI) 53 study [27] and 
the look Action for Health in Diabetes (AHEAD) study 
[28].

Model set‑up
For each validation exercise the model’s demograph-
ics, baseline risk factor and prior event history cohort 
profile was initialized to each validation study’s cohort 
profile. Clinical events, consistently defined between 
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the publication and those predicted by the Cardiff 
Model were compared over the relevant time hori-
zon. Where appropriate, each simulated cohort had 
treatment effect profile applied to consistent to that 
reported in each respective study. These treatment pro-
files were fully applied in the first cycle of the model. 
In all subsequent cycles, risk factor trajectories were 
updated according to the natural history progression 
specified by the UKPDS 68 panel equations for HbA1c, 
systolic blood pressure (SBP), total cholesterol:high 
density lipoprotein ratio (TC:HDL). The natural his-
tory of weight gain was set to +0.1  kg per year [19] 
and eGFR was assumed to decline by 0.7  ml/min/
year/1.73  m2 [29]; white blood cell count, low-density 
lipoprotein (LDL) cholesterol, albuminuria and heart 
rate were held constant using either baseline or post-
treatment values (where reported).

Risk factor uncertainty
Where baseline risk factors required by the model were 
not reported in the validation studies we used the Car-
diff Model’s default settings, drawn from UKPDS 82 [30]. 
In order to better understand how the new risk factors 
required by UKPDS 82 risk equations impact predicted 
event rates we sampled baseline values from a normal 
distribution (±2 × standard error, as reported in UKPDS 
82) which for white blood cell count was 6.9 ± 1.8 × 106/
ml; LDL cholesterol, 3.0  ±  0.6  mmol/l; estimated glo-
merular filtration rate (eGFR), 77.7  ±  15  ml  min1− 
(1.73 m)−2; heart rate, 72 ± 12 bpm; HbA1c, 145 ± 13 g/l. 
For the presence of micro or macroalbuminura (albumin 
≥50 mg/l) we sampled the binomial proportion, p, using 
the respective sample size from each study and uniformly 
sampling the proportion with albumin ≥50 mg/l between 
9 and 35%.

Goodness of fit
There exist a number of candidate statistical tests for 
comparing model output with observed outcomes; 
however, there is no consensus upon the best approach 
[31]. Formal hypothesis testing is complicated by the 
fact that the disease model we are seeking to evaluate 
is only an approximation to the actual disease; conse-
quently testing the null hypothesis of no difference 
between the validation study observation and model 
predictions makes little sense. However, while rec-
ognizing that the model is an approximation of the 
actual disease, we utilised linear regression analysis on 
annualized event rates (observed versus predicted) to 
formally assess model fit. Furthermore, to understand 
where model fit was poor, we also assessed goodness of 
fit between simulated and observed endpoints for trials, 
endpoints and treatment arm using the mean absolute 

percentage error (MAPE). These were calculated by 
comparing X (the predicted endpoints from the Car-
diff Model) with Y (the observed endpoints reported in 
each trial): X1, X2,…, Xn and Y1, Y2,…, Yn, where n is the 
sample size (the number of validation endpoints). We 
define the residuals Z as the paired difference between 
the two sets of results (model and trial): Z = Y − X, 
i = 1, 2,…, n. Calculation of the MAPE was computed 
using:

Finally, and consistent with other validation studies 
published in the health economic literature, we present 
scatterplots of observed versus predicted endpoints along 
with the coefficient of determination (R2).

Results
A total of 100 validation endpoints were simulated across 
treatment arms of twelve pivotal T2DM outcomes stud-
ies. Results from assessing overall goodness of fit via lin-
ear regression modeling to the annualized event rate is 
presented in Table 1. On average both sets of equations 
tended to slightly under predict the observed event rate 
as indicated by the intercept terms reported in Table  1; 
3.6 (p  <  0.001) for UKPDS 68 and 2.4 (p  =  0.056) for 
UKPDS 82. The borderline non-significant intercept term 
and slope coefficient for UKPDS 82 indicated a slight 
improvement in fit compared to UKPDS 68. Across all 
stratifications, the R2 statistic showed high degrees of 
linear correlation between observed and predicted and 
points. Figure 1 illustrates the relationship between study 
observed versus predicted endpoints stratified by vali-
dations study, endpoint and UKPDS equations. Overall 
the validation coefficient of determination was similar 
between both sets of equations: UKPDS 68, R2 = 0.851; 
UKPDS 82, R2 = 0.870.

Table  2 reports MAPE and R2 statistics observed and 
predicted events overall, and by study and endpoint for 
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Table 1 Observed versus  predicted events for  UKPDS 68 
and 82 risk equations across all studies and outcomes

Estimate regression coefficient, SE standard error.

Estimate SE t statistic Pr(>|t|)

UKPDS 68

 Intercept 3.603 0.959 3.757 <0.001

 Expected 0.915 0.022 41.866 <0.001

UKPDS 82

 Intercept 2.422 1.251 1.936 0.056

 Expected 0.999 0.031 32.166 <0.001
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both UKPDS 68 and 82 risk equations. Overall MAPE 
was 40.00% (UKPDS 82) and 48.99% (UKPDS 68). 
Results stratified by internal and external validation stud-
ies produced MAPE of 43.77 and 37.82%, respectively, 
when using UKPDS 82, and MAPE of 40.49 and 53.92%, 
respectively when using UKPDS 68. Areas of lack of fit, 
as measured by MAPE were inconsistent between sets of 
equations with ACCORD demonstrating a noteworthy 
lack of fit with UKPPDS 68 (MAPE = 170.88%) and the 
ADDITION study for UKPDS 82 (MAPE = 89.90%).

Figure  2 illustrates the relationship between observed 
versus predicted events using the UKPDS 82 risk equa-
tions together with estimates of the prediction range 
associated with sampling baseline albuminuria, eGFR, 
heart rate, LDL cholesterol and white blood cell count. 
Upper and lower ranges are shown for each risk fac-
tor exerting most influence on prediction validation 
endpoint. Of note is that plausible variation in these 

parameters has the potential to impact the predicted 
event rate considerably. In 90% of validation endpoints, 
sampled values within 2 standard errors of the mean (as 
reported by UKPDS) would have resulted in predicted 
endpoints lying on the 45º identity line.

Discussion
Despite a wide range of potential risk equations avail-
able to diabetes modelers those published from UKPDS 
have been widely adopted by a number of modeling 
groups [10]. Consequently, demonstrating the predictive 
validity of these new equations is an important consid-
eration for those seeking reassurance that they represent 
an improvement over the existing UKPDS 68 risk equa-
tions; not least because their inclusion within an existing 
model is not a trivial undertaking. The results from this 
study would suggest that the UKPDS 82 risk equations 
are associated with an improved fit to external validation 

Fig. 1 Observed versus predicted endpoints stratified by validations study, endpoint and UKPDS equations. Overall validation coefficient of 
determination for UKPDS 68, R2 = 0.851; UKPDS 82, R2 = 0.870. ACM all-cause mortality, CHF congestive heart failure, CHD coronary heart disease, CV 
cardiovascular, MI myocardial infarction, ESRD end stage renal disease, MVD microvascular disease, PE primary endpoint.
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studies compared to UKPDS 68 (MAPE of 40.0 and 49.0% 
for UKPDS 82 and 68, respectively) and, as expected, a 
modest improvement to the UKPDS study endpoints. In 
addition to offering an improved fit to external valida-
tion data, the UKPDS 82 equations are also capable of 
predicting an expanded set of diabetes related endpoints, 
in particular, secondary myocardial infarction, stroke 
and amputation events and ulcers. However, these equa-
tions require the specification of additional risk factors 
not always, or routinely, available; and, as illustrated in 
this analysis, these risk factors exert considerable influ-
ence on event rate predictions. This is of less relevance 
when considering the use of these equations to support 
cost-effectiveness analyses because it is the incremental 
difference in event rates (typically driven by risk factors 
reported in randomized clinical trials) that is important. 
However, even when the focus is centered on incremen-
tal results the prediction of plausible absolute event rates 
is still a relevant objective. Consequently, users of mod-
els employing the UKPDS 82 risk equations will need to 
ensure missing risk factor information is imputed with 
care.

In terms of validation results assessed via MAPE and 
the coefficient of determination (R2) the results presented 
in this analysis are consistent with those reported for the 
recent CORE diabetes model validation [32] which, for 
UKPDS 82, were MAPE = 39% and R2 = 0.765 compared 
to MAPE = 40.0% and R2 = 0.870 in this study. A recently 
published validation of the IHE Cohort Model reported 
an R2 of 0.968 for the UKPDS 82 risk equations and also 
reported a tendency for the equations to systematically 
under predict event rates [33]. Our analysis did not iden-
tify any systematic bias associated with the UKPDS 82 
equations; however, any differences may reflect findings 
due to the choice of validation studies used and baseline 
values specified for albuminuria, eGFR, heart rate, LDL 
cholesterol and white blood cell count. Furthermore, it 
is important to emphasize that in conducting these vali-
dation exercises no attempt was made to calibrate the 
output of the model to each individual trial. The model 
was initialized with baseline characteristics as reported 
in each trial and run over the appropriate time horizon. 
Model results were only compared with those reported 
after all analyses had been complete. Consequently, the 
validation results presented in this study are the same 
as those we would have presented if were blinded to the 
respective study publications.

ISPOR’s model validation guidelines emphasize the 
value of quantitatively assessing goodness of fit [34]; 
however, the specific choice of quantitative measure to 
use is not obvious. We have reported the coefficient of 
determination (R2) measure to facilitate a comparison 
due to its widespread use in the health economic model 
validation literature. However, we found the MAPE a 
more useful measure to highlight specific areas of lack-
of-fit. This raises the important issue of how one should 
interpret any quantitative measure of goodness of fit. For 
example, there is no one method of ascertaining if a mod-
el’s predictions are appropriately close to the validation 
study endpoints. While we performed a statistical meas-
ure of goodness of fit it should be noted that this test is 
highly dependent on the number of validation studies 
performed: as the sample size increases so will the likeli-
hood of rejecting the null hypothesis.

Conclusions
This study has demonstrated that the UKPDS 82 equa-
tions exhibit similar levels of external validity to the 
UKPDS 68 equations with the additional benefit of ena-
bling more diabetes related endpoints to be modeled. 
However, an area of remaining uncertainty for model 
developers relates to the influence of the expanded risk 
factor set (white blood cell count, LDL cholesterol, albu-
minuria, heart rate and eGFR) upon endpoint predic-
tion. The specification of appropriate baseline values 

Table 2 Summary measure of  goodness of  fit for  the pre-
dicted endpoints obtained from  the Cardiff Diabetes 
Model

ACM all-cause mortality, CHF congestive heart failure, CHD coronary heart 
disease, CV cardiovascular, MI myocardial infarction, ESRD end stage renal 
disease, MVD microvascular disease.

UKPDS 68 UKPDS 82

MAPE (%) R2 MAPE (%) R2

Study

 ACCORD 170.88 0.69 50.06 0.73

 ADDITION 69.83 0.68 89.90 0.67

 ADVANCE 23.13 0.99 38.91 0.99

 ASCOT 17.36 0.94 20.42 0.96

 ASPEN 19.06 0.86 24.66 0.81

 CARDS 39.84 0.39 32.12 0.69

 Look-AHEAD 27.16 0.88 29.94 075

 SAVOR 8.65 0.96 22.68 0.79

 UKPDS 33 43.87 0.83 48.63 0.95

 UKPDS 80 28.67 0.89 26.75 0.98

 VADT 39.62 0.50 31.05 0.47

Endpoint

 MI 41.80 0.93 43.68 0.85

 Stroke 28.05 0.95 29.35 0.85

 CHF 38.09 0.77 50.05 0.68

 ACM 27.36 0.78 30.35 0.85

 Amputation 48.31 0.87 48.49 0.56

 Blindness 23.40 0.92 20.31 0.96

 ESRD 278.20 0.78 88.11 0.66

 MVD 52.58 NA 35.59 NA
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and time-dependent trajectories (where relevant) will be 
an important consideration and an area in which future 
research should be focused.
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